The Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean

نویسندگان

  • Angela L. Ditri
  • Peter J. Minnett
  • Yang Liu
  • Katherine Kilpatrick
  • Ajoy Kumar
چکیده

Over several decades, improving the accuracy of Sea-Surface Temperatures (SSTs) derived from satellites has been a subject of intense research, and continues to be so. Knowledge of the accuracy of the SSTs is critical for weather and climate predictions, and many research and operational applications. In 2015, the operational Japanese MTSAT-2 geostationary satellite was replaced by the Himawari-8, which has a visible and infrared imager with higher spatial and temporal resolutions than its predecessor. In this study, data from both satellites during a three-month overlap period were compared with subsurface in situ temperature measurements from the Tropical Atmosphere Ocean (TAO) array and self-recording thermometers at the depths of corals of the Great Barrier Reef. Results show that in general the Himawari-8 provides more accurate SST measurements compared to those from MTSAT-2. At various locations, where in situ measurements were taken, the mean Himawari-8 SST error shows an improvement of ~0.15 K. Sources of the differences between the satellite-derived SST and the in situ temperatures were related to wind speed and diurnal heating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional Patterns of Tropical Indo-Pacific Climate Change: Evidence of the Walker Circulation Weakening*

Regional patterns of tropical Indo-Pacific climate change are investigated over the last six decades based on a synthesis of in situ observations and ocean model simulations, with a focus on physical consistency among sea surface temperature (SST), cloud, sea level pressure (SLP), surface wind, and subsurface ocean temperature. A newly developed bias-corrected surface wind dataset displays west...

متن کامل

Regional Patterns of Tropical Indo - Pacific Climate Change : 1 Evidence of the Walker Circulation Weakening

17 18 Regional patterns of tropical Indo-Pacific climate change are investigated over the last six 19 decades based on a synthesis of in situ observations and ocean model simulations, with a 20 focus on physical consistency among sea surface temperature (SST), cloud, sea level 21 pressure (SLP), surface wind, and subsurface ocean temperature. A newly-developed 22 bias-corrected surface wind dat...

متن کامل

The climate of the Last Glacial Maximum: Results from a coupled atmosphere-ocean general circulation model

Results from a coupled atmosphere-ocean general circulation model simulation of the Last Glacial Maximum reveal annual mean continental cooling between 48 and 78C over tropical landmasses, up to 268 of cooling over the Laurentide ice sheet, and a global mean temperature depression of 4.38C. The simulation incorporates glacial ice sheets, glacial land surface, reduced sea level, 21 ka orbital pa...

متن کامل

The role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum

A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6 degrees C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial...

متن کامل

Journal of the Meteorological Society of Japan

We investigated the effects of large-scale orography on the tropical coupled atmosphere-ocean system over the Indian and Pacific Oceans in northern summer, using the Meteorological Research Institute coupled atmosphere-ocean General Circulation Model (GCM). Six different experiments were conducted with mountain heights of 100%, 80%, 60%, 40%, 20%, and 0% of the standard mountain height. The res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018